If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+56x+80=0
a = 3; b = 56; c = +80;
Δ = b2-4ac
Δ = 562-4·3·80
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{34}}{2*3}=\frac{-56-8\sqrt{34}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{34}}{2*3}=\frac{-56+8\sqrt{34}}{6} $
| z(-2)=-11;z(7)=101 | | z(-2)=-26;z(7)=143 | | x=48–0.5(45-0.5x) | | z(-2)=-10;z(7)=143 | | 11x+7+3x+5=180 | | z(-2)=-2;z(7)=241 | | (x^2+4x^2+1)^1/2=0 | | x-2/9x=7 | | 4x^2-x+1=15/16+1 | | 11x+7=3x+5 | | 180=14x+70+20x+8 | | -2(t)=2t^2+7t-4 | | -3g-3+5+6g=11 | | 117=6x+44+(-10x)+65 | | (x+27)2=45 | | 6x-(x+2)=6x-x-2 | | 20=30/x | | m-10/3-6m-8/4=1 | | 37.73=8g+3.81 | | 3/60=30/x | | x/4+8=-2 | | 3x+28+9x+38=90 | | 8(3y-7)=24y-7 | | 0.6g-1/3=-10/3 | | 0.04{0.04}=x | | 5x+7=(-1x)-(-2) | | 11=9x+5-6xx= | | 4+n-9=-9+1*2n+12 | | 48=8–2x | | F(n)=(2)5n | | 8b-27=1.5 | | 3x+28+9x+38=180 |